
www.manaraa.com

Towards a Common Metamodel for the Development of
Web Applications1

Nora Koch and Andreas Kraus

Ludwig-Maximilians-Universität München,
Oettingenstr. 67, 80538 München, Germany

www.pst.informatik.uni-muenchen.de
{kochn, krausa}@informatik.uni-muenchen.de

Abstract. Many different methodologies for the development of Web
applications were proposed in the last ten years. Although most of them define
their own notation for building models such as the navigation, the presentation
or the personalization model, we argue that in many cases it is just another
notation for the same concepts, i.e. they should be based on a common
metamodel for the Web application domain. In addition, tool-supported design
and generation is becoming essential in the development process of Web
applications due to the increasing size and complexity of such applications,
and CASE-tools should be built on a precisely specified metamodel of the
modeling constructs used in the design activities, providing more flexibility if
modeling requirements change.

This paper presents a first step towards such a common metamodel by
defining first a metamodel for the UML-based Web Engineering (UWE)
approach. The metamodel is defined as a conservative extension of the UML
metamodel. We further discuss how to map the UWE metamodel to the UWE
modeling constructs (UML profile) of the design method which was already
presented in previous works. The metamodel and this mapping are the core of
the extension of the ArgoUML open source CASE-tool we developed to
support the UWE design notation and method.

1 Introduction

The Web Engineering field is rich in design methods such as OOHDM, OO-H, UWE,
W2000, WebML or WSDM [2,5,9] supporting the complex task of designing Web
applications. These methodologies propose the construction of different views (i.e.
models) which comprises at least a conceptual model, a navigation and a presentation
model although naming them differently. Each model is built out of a set of modeling
elements, such as nodes and links for the navigation model or image and anchor for
the presentation model. In addition, all these methodologies define or choose a
notation for the constructs they define.

1 This research has been partially supported by the EC 5th Framework project AGILE (IST-

2001-32747) and by the German BMBF project GLOWA-Danube.

Published in 3rd International Conference on Web Engineering (ICWE 2003), Proceedings, J.M.
Cueva Lovelle, B.M. Gonzalez Rodriguez, L. Joyanes Aguilar, J.E. Labra Gayo and M.P. Paule
Ruiz (eds.) LNCS 2722, ©Springer Verlag, 497-506, July 2003.

www.manaraa.com

 Nora Koch and Andreas Kraus

We argue that although all methodologies for the development of Web applications
use different notations and propose slightly different development processes they
could be based on a common metamodel for the Web application domain. A
metamodel is a precise definition of the modeling elements, their relationships and the
well-formedness rules needed for creating semantic models. A methodology based on
this common metamodel may only use a subset of the constructs provided by the
metamodel. The common Web application metamodel should therefore be the
unification of the modeling constructs of current Web methodologies allowing for
their better comparison and integration.

Metamodeling also plays a fundamental role in CASE-tool construction and is as
well the core of automatic code generation. We propose to build the common
metamodel on the standardized OMG metamodeling architecture facilitating the
construction of meta CASE-tools.

A very interesting approach in terms of metamodeling for Web applications is the
metamodel defined for the method W2000 to express the semantics of the design
constructs of this method [2]. This metamodel is an extension of the UML metamodel
complemented with Schematron rules for model checking. The CADMOS-D design
method for web-based educational applications [8] defines another metamodel. It
provides a UML visual representation of the modeling elements, but does not
establish a relationship to the UML metamodel. Other approaches, such as the
Generic Customization Model for Ubiquitous Web Applications [3] or the Munich
Reference Model for Adaptive Hypermedia Applications [6], define a reference
model for such applications, providing a framework for understanding relationships
among entities of those specific Web domains.

As a first step towards a common metamodel we present in this paper a metamodel
for the UWE methodology, which could then be joined with metamodels that are/will
be defined for other methods. It is defined as a conservative extension of the UML
metamodel [10]. This metamodel provides a precise description of the concepts used
to model Web applications and their semantics. Our methodology UWE is based on
this metamodel including tool support for the design and the semi-automatic
generation of Web applications. We further define a mapping from the metamodel to
the concrete syntax (i.e. notation) used in UWE. The description of the complete
metamodel and the details of the mapping to the UWE notation are not within the
scope of this paper (published as a technical report [7]).

The paper is organized as follows: Section 2 gives a brief introduction to the UWE
methodology. In Section 3 we propose a metamodel for the UWE methodology. This
metamodel is specified in UML. In Section 4 we discuss how the metamodel elements
can be mapped to the UWE notation. Finally, some conclusions and future work are
outlined in the last section.

2 UWE Methodology

The UWE methodology covers the whole life-cycle of Web application development
proposing an object-oriented and iterative approach based on the Unified Software

www.manaraa.com

Towards a Common Metamodel for the Development of Web Applications

Development Process [4]. The main focus of the UWE approach is the systematic
design followed by a semi-automatic generation of Web applications.

The notation used for design is a “lightweight” UML profile described in previous
works, e.g. [5]. A UML profile is a UML extension based on the extension
mechanisms defined by the UML itself with the advantage of using a standard
notation that can be easily supported by tools and that does not impact the interchange
formats. The UWE profile includes stereotypes and tagged values defined for the
modeling elements needed to model the different aspects of Web applications, such as
navigation, presentation, user, task and adaptation aspects. For each aspect a model is
built following the guidelines provided by the UWE methodology for the systematic
construction of models. For example, a navigation model is built out of navigation
classes, links and a set of indexes, guided tours and queries. The navigation classes
and links are views over conceptual classes. Similarly, the user is modeled by a user
role, user properties and associations of these properties to the conceptual classes.
Currently, an extension of the CASE-tool ArgoUML [1] is being implemented to
support the construction of these UWE design models.

In Fig. 1 we give an example for the UWE design models of a Conference
Management System application. On the left side the conceptual model is depicted
from which in successive steps a navigation model is systematically constructed. On
the right side we show the result of the first step in building the navigation model.

Fig. 1. Example for UWE design models of a Conference Management System

The semi-automatic generation of Web applications from design models is
supported by the UWEXML approach [5]. Design models delivered by the design
tools in the XMI-Format are transformed into XML documents that are published by
an XML publishing framework.

3 UWE Metamodel

The UWE metamodel is designed as a conservative extension of the UML metamodel
(version 1.4). Conservative means that the modeling elements of the UML metamodel
are not modified e.g. by adding additional features or associations to the modeling

Conceptual Model Navigational Model

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Keyword
key : String

Paper
title : String
state : Integer

*

*

*
*

Author
name : String
affiliation : String

*

*

1..*1..*

*

*

*

*

1..*1..*

*
*

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Paper

title : String
keywords[*]: String
state: Integer

*

Author
name : String
affiliation : String

*

*

*

*

*

1..*

1..*

«navigation class»

«navigation class»«navigation class»

SubmittedPapers

Conceptual Model Navigational Model

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Keyword
key : String

Paper
title : String
state : Integer

*

*

*
*

Author
name : String
affiliation : String

*

*

1..*1..*

*

*

*

*

1..*1..*

*
*

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Paper

title : String
keywords[*]: String
state: Integer

*

Author
name : String
affiliation : String

*

*

*

*

*

1..*

1..*

«navigation class»

«navigation class»«navigation class»

SubmittedPapers

www.manaraa.com

 Nora Koch and Andreas Kraus

element Class. All new modeling elements of the UWE metamodel are related by
inheritance to at least one modeling element of the UML metamodel. We define for
them additional features and relationships to other metamodel modeling elements and
use OCL constraints to specify the additional static semantics (analogous to the well-
formedness rules in the UML specification). By staying thereby compatible with the
MOF interchange metamodel we can take advantage of metamodeling tools that base
on the corresponding XML interchange format XMI.

Fig. 2. Embedding of the UWE metamodel within the UML metamodel

In addition, the UWE metamodel is “profileable” [2], which means that it is
possible to map the metamodel to a UML profile. Then standard UML CASE-tools
with support for UML profiles or the UML extension mechanisms, i.e. stereotypes,
tagged values and OCL constraints can be used to create the UWE models of Web
applications. If technically possible these CASE-tools can further be extended to
support the UWE method. All UWE modeling elements are contained within one top-
level package UWE which is added to the three UML top-level packages. The
structure of the packages inside the UWE package depicted in Fig. 2 is analogous to
the UML top-level package structure (shown in gray).

Fig. 3. Package substructure of the UWE metamodel

The package Foundation contains all basic static modeling elements, the package

Behavioral Elements depends from it and contains all elements for behavioral
modeling and finally the package Model Management which also depends from the

Behavioral
Elements

Model

Adaptation

Management

Presentation
Task

NavigationConceptual

Foundation

Core

Context

User Environment

Behavioral
Elements

Model

Adaptation

Management

Presentation
Task

NavigationConceptual

Foundation

Core

Context

User Environment

Foundation

UWE

Model
Management

Behavioural
Elements

Foundation

Behavioural
Elements

Model
Management

Foundation

Behavioural
Elements

Model
Management

Foundation

UWE

Model
Management

Behavioural
Elements

Foundation

Behavioural
Elements

Model
Management

Foundation

Behavioural
Elements

Model
Management

www.manaraa.com

Towards a Common Metamodel for the Development of Web Applications

Foundation package contains all elements to describe the models themselves specific
to UWE. These UWE packages depend on the corresponding UML top-level
packages.

The UWE Foundation package is further structured in the Core and the Context
packages (see Fig. 3). The former contains packages for the core (static) modeling
elements for the basic aspects of Web applications which are the conceptual,
navigation and presentation aspects. The latter depends on the Core package and
contains further sub-packages for modeling the user and the environment context. The
Behavioral Elements package consists of the two sub-packages Task and Adaptation
that comprise modeling elements for the workflow and personalization aspects of a
Web application respectively. All together one can say that the separation of concerns
of Web applications is represented by the package structure of the UWE metamodel.

In the following sections we focus on the Navigation and Presentation packages of
the Core package; for description of other packages see [7].

3.1 Navigation Package

The basic elements in navigation models are nodes and links. The corresponding
modeling elements in the UWE metamodel are NavigationNode and Link, which are
derived from the UML Core elements Class and Association, respectively. The
backbone of the navigation metamodel is shown in Fig. 4. The NavigationNode
metaclass is abstract which means that only further specialized classes may be
instantiated; furthermore it can be designated to be an entry node of the application
with the isLandmark attribute. The Link class is also an abstract class and the
isAutomatic attribute is used to express that the link should be followed automatically
by the system and not by the user. Links connect a source NavigationNode with one or
more target NavigationNodes as expressed by the two associations between Link and
NavigationNode. Note that this is an extension to the semantics of links in HTML
where only one target is allowed (unless some technical tricks are employed). The
associations between Link and NavigationNode are purely conceptual because we
reuse the structure defined in the UML Core package where Classes are connected to
Associations via AssociationEnds. For further details see the UML specification [10].

Fig. 4. UWE Navigation package – Backbone

Class
(Foundation Core)

NavigationNode

Navigation Class ExternalNodeMenu

isLandmark: Boolean

Association
(Foundation Core)

Link

ExternalLink TaskLinkNavigationalLink

isAutomatic: Boolean

+source +outLinks

{derived}

{derived}

+inLinks+target

url: String

*

*1

1..*
1..*

* *0..1

Class
(Foundation Core)

NavigationNodeNavigationNode

Navigation ClassNavigation Class ExternalNodeExternalNodeMenuMenu

isLandmark: Boolean

Association
(Foundation Core)

LinkLink

ExternalLink TaskLinkNavigationalLinkExternalLinkExternalLink TaskLinkTaskLinkNavigationalLinkNavigationalLink

isAutomatic: Boolean

+source +outLinks

{derived}

{derived}

+inLinks+target

url: String

*

*1

1..*
1..*

* *0..1

www.manaraa.com

 Nora Koch and Andreas Kraus

The NavigationNode is further specialized to the concrete node types
NavigationClass, Menu and ExternalNode. The NavigationClass element connects the
navigation model with the conceptual model as described in the next paragraph. It
may contain a Menu that contains Links to NavigationNodes. We also distinguish the
following types of links that are specializations of the class Link:
• the NavigationLink is used for modeling the (static) navigation with the usual

semantics in hypermedia applications and may contain one or more
AccessPrimitives, such as Index, Query and GuidedTour (these classes are not
visualized in Fig. 4 due to space problems).

• the TaskLink connects the source node with the definition of a part of its dynamic
behavior specified in a UWE task model; and

• the ExternalLink links nodes outside the application scope, the so-called External
Nodes.
 Fig. 5 shows the connection between navigation and conceptual objects. A

NavigationClass is derived from the ConceptualClass at the association end with the
role name derivedFrom – or – one could say that there may exists several navigation
views on a conceptual class. The NavigationClass consists of NavigationAttributes
(derived from the UML Core element Attribute) which themselves are derived from
ConceptualAttributes. An important invariant is that all ConceptualAttributes from
which the NavigationAttributes of a NavigationClass are derived, have to be
ConceptualAttributes of a ConceptualClass in the transitive closure of the
ConceptualClass from that the NavigationClass is derived. This can be formally
expressed as an OCL constraint.

Fig. 5. UWE Navigation package – Connection between navigation and conceptual objects

Further it is possible to specify what types of access primitives should be used for
navigation links with a target multiplicity greater than one. For more details see [7].

3.2 Presentation Package

The central element for structuring the presentation space is the abstract class
Location (see Fig. 6). The presentation sub-structure is modeled with the specialized
class LocationGroup that consists of a list of sub-locations whereas presentation
alternatives between different Locations are modeled with the class

Attribute
(Foundation Core)

NavigationNode

NavigationClass

NavigationAttribute
«implicit»

+ derivedFrom

*

1
ConceptualClass

(UWE. Foundation . Core . Conceptual)

ConceptualAttribute
(UWE. Foundation . Core . Conceptual)

+ derivedFrom
Attributes

inv: self.feature -> select
(oclIsKindOf (NavigationAttribute))
.derivedFromAttributes- >forAll (f |
self.derivedFrom.transitiveClosure

->exists (feature =f))

Attribute
(Foundation Core)

NavigationNode

NavigationClass

NavigationAttribute
«implicit»

+ derivedFrom

*

1
ConceptualClass

(UWE. Foundation . Core . Conceptual)

ConceptualAttribute
(UWE. Foundation . Core . Conceptual)

+ derivedFrom
Attributes

inv: self.feature -> select
(oclIsKindOf (NavigationAttribute))
.derivedFromAttributes- >forAll (f |
self.derivedFrom.transitiveClosure

->exists (feature =f))

www.manaraa.com

Towards a Common Metamodel for the Development of Web Applications

LocationAlternative; optionally a default alternative can be specified. Finally, the
“atomic” subclass PresentationClass contains all the logical user interface (UI)
elements presented to the user of the application. It is derived from exactly one
NavigationNode. The user interface elements are for example Image, Text or UI group
elements, such as Collection, Anchor and Form. How these elements are related to
Link and Index can be seen in the complete description of this package [7]. Further we
use a ternary association for expressing link-sensitive presentation, i.e. when
following a link from one NavigationNode to another we can specify the
PresentationClass which should be presented to the user depending on the link
chosen.

Fig. 6. UWE Presentation Package – Backbone

4 Mapping to the UWE Notation

Metamodels define the concepts and their relationships used in the modeling activities
of a certain domain – Web Design in our case – whereas designers build application
models using a concrete notation, i.e. the concrete syntax.

One way of mapping a metamodel to a concrete syntax often found in literature is
to extend the UML syntax in a non-standard way. This means for example that instead
of using the built-in extension mechanism of the UML new graphical symbols are
introduced or existing symbols are decorated or its shapes are changed. This could
technically be easily achieved e.g. using ArgoUML [1]; by using the NSUML Java
framework one can make ArgoUML work with the extended UML metamodel and
customize the graphical appearance of all modeling elements. The drawback of this
approach is on the one hand that the syntax and semantic of the new notation has to be
documented thoroughly. On the other hand the corresponding metamodel interchange
format is no longer the same as the UML interchange format. The consequence is that
one can no longer use tools which rely on the UML XMI format.

Class
(Foundation.Core)

NavigationNode
(UWE.Foundation.Core.Navigation)

Link
(UWE.Foundation.Core.Navigation)

+alternatives
Location

LocationAlternative LocationGroupPresentationClass

*

*

0..1

+default
+subalocations {ordered}

+derivedFrom +target

*

0..1

*

1

11

*

Class
(Foundation.Core)

NavigationNode
(UWE.Foundation.Core.Navigation)

Link
(UWE.Foundation.Core.Navigation)

+alternatives
LocationLocation

LocationAlternativeLocationAlternative LocationGroupLocationGroupPresentationClassPresentationClass

*

*

0..1

+default
+subalocations {ordered}

+derivedFrom +target

*

0..1

*

1

11

*

www.manaraa.com

 Nora Koch and Andreas Kraus

We chose to map the metamodel concepts to a UML profile. A UML profile
comprises the definition of stereotypes and tagged values and specifies how they can
be used by OCL constraints (i.e. well-formedness of a model). With appropriate tool
support a model can be automatically checked if it is conform to the profile. The
definition of a UML profile has the advantage of being supported by nearly every
UML CASE-tool either automatically, by a tool plug-in or passively when the model
is saved and then checked by an external tool.

A simplified version of the mapping rules is the following:
• Metamodel classes (e.g. NavigationClass) are mapped to stereotyped classes. The

name of the class is mapped to the name of the stereotype and the inheritance
structure is mapped to a corresponding inheritance structure between stereotypes.

• Attributes in the metamodel (e.g. the isAutomatic attribute of Link) are mapped
directly to tagged values of the owner class with the corresponding name and type.

• Associations are mapped to tagged values or associations. Mapping to associations
is only possible if both classes connected to the association ends are a subtype of
Classifier, which means that they have a class-like notation. This is for example
true for the aggregation between Location and LocationGroup in the presentation
package. On the other hand we can always map associations to tagged values with
the drawback of worse readability in the diagrams, e.g. the association between
NavigationClass and ConceptualClass. In the case of binary associations we assign
a tagged value to the corresponding stereotyped class of each association end.

We propose to resolve inheritance in the metamodel by repeating the mapping of
attributes and associations for all subclasses, e.g. the isLandmark attribute of the
abstract class NavigationNode which is also mapped for the subclass
NavigationClass.

In the following sections we present the notation for some of the UWE models
using the UWE UML profile. For more details about the mapping process refer to [7].

4.1 UML Profile for the Navigation Model

We use the simplified example of a conference management system presented in Fig.
1 to illustrate the mapping process and the notation of the UWE profile for the
navigation model. The central element in the metamodel NavigationClass is mapped
to the stereotype «navigation class» (see Fig. 5 and Fig. 7). The metaattribute
isLandmark indicating that the Conference model element is an entry point is
represented as a corresponding tagged value of the model element. Another tagged
value derivedFrom is a mapping of the metaassociation between NavigationClass and
ConceptualClass. As shown in the example for each model attribute the relation to the
attributes of the conceptual model is specified by the derivedFromAttributes tagged
value. The keywords attribute of the class Paper is a non-trivial example of this
relationship, hence the derivedFromAttributes tagged value states that this attribute is
related to the key attribute of the Keyword class in the conceptual model associated to
the Paper class in the conceptual model.

As the metaclass Link is a subclass of the UML metaclass Association it is also
visualized like a UML association. We decorate links with a stereotype such as for
example «navigation link». Each link must have an explicit direction and

www.manaraa.com

Towards a Common Metamodel for the Development of Web Applications

multiplicities defined. For better readability the stereotype for links may be hidden
when the context is clear.

Fig. 7. Example for a navigation model using the UWE UML profile

4.2 UML Profile for the Presentation Model

The three specializations of the abstract class Location (see Fig. 6) are mapped to the
corresponding stereotypes for the class elements «location alternative», «location
group» and «presentation class». The presentation grouping expressed by the
aggregation association of the LocationGroup element is mapped to aggregation
associations of the «location group» classes where the aggregation is ordered and the
association ends have classifier scope and multiplicity one. LocationAlternatives are
mapped in a similar way, only that we express the default alternative by a tagged
value.

Fig. 8. Example for a presentation model using the UWE UML profile

The relationship between PresentationClasses, NavigationNodes and Links is

expressed by one tagged value of the «presentation class» element with the name
derivedFrom. The value has to be the full qualified name of the corresponding
NavigationNode for entry presentation classes corresponding to entry navigation
nodes (i.e. isLandmark=true) or for not-link-sensitive presentation classes. In the case
of a link- sensitive presentation the name of the corresponding Link is assigned to the
tagged value. In Fig. 8 we give an example for a presentation model of the
conference application example. The location group MainWindow divides the

Conference

reviewDeadline : Date {derivedFromAttributes=reviewDeadline}
submissionDeadline : Date {derivedFromAttributes=submissionDeadline}
title : String {derivedFromAttributes=title}

«navigation class» {isLandmark,
derivedFrom=Conference}

Paper

Keywords[*] : String {derivedFromAttributes=keyword.key}
title : String {derivedFromAttributes=title}

«navigation class»

{derivedFrom=Paper} Author

affilation : String {derivedFromAttributes=affilation}
name : String {derivedFromAttributes=name}

«navigation class»

{derivedFrom=Author}
1..*

1..*

*

*

*

*

«navigation link» «navigation link»

«navigation link»

SubmittedPapers

«navigation link»

Conference

reviewDeadline : Date {derivedFromAttributes=reviewDeadline}
submissionDeadline : Date {derivedFromAttributes=submissionDeadline}
title : String {derivedFromAttributes=title}

«navigation class» {isLandmark,
derivedFrom=Conference}

Paper

Keywords[*] : String {derivedFromAttributes=keyword.key}
title : String {derivedFromAttributes=title}

«navigation class»

{derivedFrom=Paper} Author

affilation : String {derivedFromAttributes=affilation}
name : String {derivedFromAttributes=name}

«navigation class»

{derivedFrom=Author}
1..*

1..*

*

*

*

*

«navigation link» «navigation link»

«navigation link»

SubmittedPapers

«navigation link»

PapersFromAuthorContent
«presentation class»

{derivedFrom=SubmittedPapers}

PaperContent
«presentation class»

{derivedFrom=Paper}

AuthorContent
«presentation class»

{derivedFrom=Author}

ConferenceContent
«presentation class»

{derivedFrom=Conference}

Content
«location alternative»

{default=ConferenceContent}

Navigation
«location alternative»

MainWindow
«location group»

PapersFromAuthorContent
«presentation class»

{derivedFrom=SubmittedPapers}

PaperContent
«presentation class»

{derivedFrom=Paper}

AuthorContent
«presentation class»

{derivedFrom=Author}

ConferenceContent
«presentation class»

{derivedFrom=Conference}

Content
«location alternative»

{default=ConferenceContent}

Navigation
«location alternative»

MainWindow
«location group»

www.manaraa.com

 Nora Koch and Andreas Kraus

presentation space into the Navigation and the Content location alternatives. The
possible alternatives are the presentation classes ConferenceContent (which is the
default one), AuthorContent and PaperContent. For the latter we added a link-
sensitive presentation class PaperFromAuthorContent which is presented when the
link SubmittedPapers is used to navigate to the Paper node. This is expressed by the
derivedFrom tagged value. As in the description of the metamodel we omit further
details about mapping the user interface part of the metamodel. Here we only want to
mention that the user interface elements (e.g. button, text or image) are aggregated to
the «presentation class» elements.

5 Conclusions

In this paper we presented a metamodel for the UWE methodology and sketched the
mapping to a concrete syntax (i.e. notation), the UWE notation defined as a UML
profile. The UWE metamodel is defined as a conservative extension of the UML
metamodel. This metamodel is the basis for a common metamodel for the Web
application domain and for the CASE-Tool supported design.

In our future work we will concentrate on the further refinement of the UWE
metamodel to cope with the needs for automatic code generation, especially for the
dynamic aspects like tasks and adaptation. At the same time we will extend our tools:
on the one hand we have to adapt the CASE-tool ArgoUWE to easily cope with a
evolving metamodel and on the other hand our tool for the semi-automatic generation
of Web applications UWEXML [5] has to be extended.

References

1. ArgoUML. www.tigris.org
2. Baresi L., Garzotto F., Paolini P. Meta-modeling Techniques meets Web Application

Design Tools. Proc. of FASE 2002, LNCS 2306, Springer Verlag, pp. 294-307, 2002.
3. Finkelstein A., Savigni A., Kappel G., Retschitzegger W., Pöll B., Kimmerstorfer E.,

Schwinger W., Hofer T., Feichtner C., "Ubiquitous Web Application Development - A
Framework for Understanding", Proc. of SCI2002, July 2002.

4. Jacobson I., Booch G., Rumbaugh J. The Unified Software Development Process. Addison
Wesley, 1999.

5. Koch N., Kraus A. The expressive Power of UML-based Web Engineering. Proc. of
IWWOST´02, CYTED, pp. 105-119, 2002.

6. Koch N., Wirsing M. The Munich Reference Model for Adaptive Hypermedia
Applications. Proc. of AH´2002, LNCS 2347, Springer Verlag, pp 213-222, 2002.

7. Kraus A., Koch N. A Metamodel for UWE. Technical Report 0301, University of
Munich, www.pst.informatik.uni-muenchen.de/publications/TR0301_UWE.pdf, 2003.

8. Retalis S., Papasalourus A., Skordalakis M. Towards a generic conceptual design meta-
model for web-based educational applications. Proc. of IWWOST´02, CYTED, 2002.

9. Schwabe D., Pastor O. (Eds.). Online Proc. of IWWOST´01. www.dsic.upv.es
/~west2001/iwwost01

10. UML, The Unified Modeling Language, Version 1.4. Object Management Group (OMG).
www.omg.org, 2001.

